Zur Seitenansicht
 

Titelaufnahme

Titel
Effect of HXT 1 and HXT 7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells
VerfasserRossi, Giorgia ; Sauer, Michael ; Porro, Danilo ; Branduardi, Paola
Erschienen in
Microbial Cell Factories, 2010, Jg. 9,
ErschienenBioMed Central (BMC), 2010
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
ISSN1475-2859
URNurn:nbn:at:at-ubbw:3-356 Persistent Identifier (URN)
DOIdoi:10.1186/1475-2859-9-15 
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Effect of HXT 1 and HXT 7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells [0.51 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

Background:

Since about three decades, Saccharomyces cerevisiae can be engineered to efficiently produce proteins and metabolites. Even recognizing that in baker's yeast one determining step for the glucose consumption rate is the sugar uptake, this fact has never been conceived to improve the metabolite(s) productivity.

In this work we compared the ethanol and/or the lactic acid production from wild type and metabolically engineered S. cerevisiae cells expressing an additional copy of one hexose transporter.

Results:

Different S. cerevisiae strains (wild type and metabolically engineered for lactic acid production) were transformed with the HXT 1 or the HXT 7 gene encoding for hexose transporters.

Data obtained suggest that the overexpression of an Hxt transporter may lead to an increase in glucose uptake that could result in an increased ethanol and/or lactic acid productivities. As a consequence of the increased productivity and of the reduced process timing, a higher production was measured.

Conclusion:

Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is a well established concept. A high production relies on a multi-factorial system. We showed that by modulating the first step of the pathway leading to lactic acid accumulation an improvement of about 15% in lactic acid production can be obtained in a yeast strain already developed for industrial application.